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Introduction: = 

In this project we are implementing Nash’s systolic implementation and Chuang an He,s 

systolic implementation for  Faddeev’s algorithm. These two implementations have their 

own advantages and drawbacks. Here in this project report we first see detail of Nash 

implementation and then we will go for Chaung and He’s implementation. 

The organization of this report is like this:-  

1. First we take detail idea about what is systolic architecture and how it can be used 

for matrix multiplication and its advantages and disadvantages. 

2. Then we discuss about Gaussian Elimination for matrix computation and its 

properties. 

3. Then we will see Faddeev’s algorithm and how it is used. 

4. Systolic arrays for MATRIX TRIANGULARIZATION 

5. We will discuss Nash implementation in detail and its VHDL coding. 

6. Advantages and disadvantage of Nash systolic implementation. 

7. Chaung and He’s implementation in detail and its VHDL coding. 

8. Difficulties chased in this project.  

9. Conclusion. 

10. VHDL code for Nash Implementation. 

11. VHDL code for Chaung and He’s Implementation. 

12. Simulation Results. 

13. References.   

14. PowerPoint Presentation 
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1: Systolic Architecture: = 

A systolic array is composed of matrix-like rows of data processing units called cells. Data 

processing units (DPU) are similar to central processing units (CPU)s, (except for the usual 

lack of a program counter, since operation is transport-triggered, i.e., by the arrival of a 

data object). Each cell shares the information with its neighbours immediately after 

processing. The systolic array is often rectangular where data flows across the array 

between neighbour DPUs, often with different data flowing in different directions. The data 

streams entering and leaving the ports of the array are generated by auto-sequencing 

memory units, ASMs. Each ASM includes a data counter. In embedded systems a data 

stream may also be input from and/or output to an external source. 

An example of a systolic algorithm might be designed for matrix multiplication. 

One matrix is fed in a row at a time from the top of the array and is passed down the array, 

the other matrix is fed in a column at a time from the left hand side of the array and passes 

from left to right. Dummy values are then passed in until each processor has seen one 

whole row and one whole column. At this point, the result of the multiplication is stored in 

the array and can now be output a row or a column at a time, flowing down or across the 

array. 

Systolic arrays are arrays of DPUs which are connected to a small number of nearest 

neighbour DPUs in a mesh-like topology. DPUs perform a sequence of operations on data 

that flows between them. Because the traditional systolic array synthesis methods have 

been practiced by algebraic algorithms, only uniform arrays with only linear pipes can be 

obtained, so that the architectures are the same in all DPUs. The consequence is, that only 

applications with regular data dependencies can be implemented on classical systolic 

arrays. Like SIMD machines, clocked systolic arrays compute in "lock-step" with each 

processor undertaking alternate compute | communicate phases. But systolic arrays with 

asynchronous handshake between DPUs are called wavefront arrays. 

Applications 

An application Example - Polynomial Evaluation 

Horner's rule for evaluating a polynomial is: 

 

A linear systolic array in which the processors are arranged in pairs: one multiplies its 

input by  and passes the result to the right, the next adds  and passes the result to the 

right: 

http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Matrix_(math)
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Horner%27s_rule
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Advantages and Disadvantages 

Pros 

 Faster 

 Scalable 

Cons 

 Expensive 

 Highly specialized for particular applications 

 Difficult to build 

 

Systolic architecture implementation in VHDL: = 

This is a form of pipelining, sometimes in more than one dimension. Machines have 

been constructed based on this principle, notable the iWARP, fabricated by Intel. 
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• ‘Laying out algorithms in VLSI’  

 efficient use of hardware  

 not general purpose  

 not suitable for large I/O bound applications  

 control and data flow must be regular 

 The idea is to exploit VLSI efficiently by laying out algorithms (and hence 

architectures) in 2-D (not all systolic machines are 2-D, but probably most 

are) 

 Simple cells  

 Each cell performs one operation (usually) 

• Definition 1.  

 sys·to·le (sîs¹te-lê) noun  

 The rhythmic contraction of the heart, especially of the ventricles, by which blood is 

driven through the aorta and pulmonary artery after each dilation or diastole.  

 [Greek sustolê, contraction, from sustellein, to contract. See systaltic.]  

 — sys·tol¹ic (sî-stòl¹îk) adjective  

 American Heritage Dictionary 

• Definition 2.  

• Data flows from memory in a rhythmic fashion, passing through many processing 

elements before it returns to memory.  

 

• Definition 3. 

• A set of simple processing elements with regular and local connections which takes 

external inputs and processes them in a predetermined manner in a pipelined 

fashion. 
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Different types of systolic array: = 

 

In our Nash and Chuang implementation we are using 2-d array. 

 

 

 

Example of systolic network: Bi-directional two-dimensional network 
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Applications of systolic Array: = 

• Matrix Inversion and Decomposition.                                   

• Polynomial Evaluation.                                                          

• Convolution.  

• Systolic arrays for matrix multiplication.                                                          

• Image Processing.                                                                  

• Systolic lattice filters used for speech and seismic signal processing.                                                                                

• Artificial neural network. 

• Robotics (PSU) 

• Equation Solving (PSU) 

• Combinatorial Problems (PSU) 
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Features of Systolic Arrays: = 

• A Systolic array is a computing network possessing the following features:  

– Synchrony,  

– Modularity, 

– Regularity,  

– Spatial locality, 

– Temporal locality,  

– Pipelinability,  

– Parallel computing. 

 

2. Gaussian Elimination for matrix computation: = 

The process of Gaussian elimination has two parts. The first part (Forward Elimination) 

reduces a given system to either triangular or echelon form, or results in 

a degenerate equation, indicating the system has no unique solution but may have multiple 

solutions (rank<order). This is accomplished through the use of elementary row 

operations. The second step uses back substitution to find the solution of the system above. 

Stated equivalently for matrices, the first part reduces a matrix to row echelon 

form using elementary row operations while the second reduces it to reduced row echelon 

form, or row canonical form. 

Another point of view, which turns out to be very useful to analyze the algorithm, is that 

Gaussian elimination computes matrix decomposition. The three elementary row 

operations used in the Gaussian elimination (multiplying rows, switching rows, and adding 

multiples of rows to other rows) amount to multiplying the original matrix with invertible 

matrices from the left. The first part of the algorithm computes an LU decomposition, while 

the second part writes the original matrix as the product of a uniquely determined 

invertible matrix and a uniquely determined reduced row-echelon matrix. 

Example 

Suppose the goal is to find and describe the solution(s), if any, of the following system of 

linear equations: 
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The algorithm is as follows: eliminate x from all equations below , and then 

eliminate y from all equations below . This will put the system into triangular form. 

Then, using back-substitution, each unknown can be solved for. 

In the example, x is eliminated from  by adding  to . x is then eliminated from 

 by adding  to . Formally: 

 

 

The result is: 

 

Now y is eliminated from  by adding  to : 

 

The result is: 

 

This result is a system of linear equations in triangular form, and so the first part of the 

algorithm is complete. The last part, back-substitution, consists of solving for the known’s in 

reverse order. It can thus be seen that 

 

Then,  can be substituted into , which can then be solved to obtain 

 

Next, z and y can be substituted into , which can be solved to obtain 

 

The system is solved. 
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Some systems cannot be reduced to triangular form, yet still have at least one valid 

solution: for example, if y had not occurred in  and  after the first step above, the 

algorithm would have been unable to reduce the system to triangular form. However, it 

would still have reduced the system to echelon form. In this case, the system does not have 

a unique solution, as it contains at least one free variable. The solution set can then be 

expressed parametrically (that is, in terms of the free variables, so that if values for the free 

variables are chosen, a solution will be generated). 

 

In practice, one does not usually deal with the systems in terms of equations but instead 

makes use of the augmented matrix (which is also suitable for computer manipulations). 

For example: 

 

 

 

Therefore, the Gaussian Elimination algorithm applied to the augmented matrix begins 

with: 

 

Which,  at the end of the first part (Gaussian elimination, zeros only under the leading 1) of 

the algorithm, looks like this: 

 

That is, it is in row echelon form. 

At the end of the algorithm, if the Gauss–Jordan elimination(zeros under and above the 

leading 1) is applied: 

  That is, it is in reduced row echelon form, or row canonical form. 
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Faddeev’s algorithm: = 
 

One general purpose algorithm, useful for a wide class of matrix operations and especially 

suited for systolic implementation, is the Faddeev's algorithm  illustrated by the simple case of 

computing the value of ex + D, given AX = B, where A, B, C, and D are known matrices of order 

n, and X is an unknown matrix. 

 

or, in abbreviated form 
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If by some means a suitable linear combination of the rows of A and B is found and added 
to the rows of -c and D as follow 

 

Where W specifies the appropriate linear combination such that only zeroes appear in the 
lower left hand quadrant, then the lower right hand quadrant will become matrix 
E = cx + D. This is because annihilating -C requires W = CA-1 so that D + WB = D + CA-1B, 
and since AX = B, D + WB = D + CX. The elegance and simplicity of the algorithm is apparent 
when one notes that to carry it out, it is only necessary to annul the lower left hand 
quadrant by applying a suitable matrix triangularization procedure to the left side of (2.2) 
while extending the operation to its right side. We will then have from (2.1). 
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Where A(k ) is an upper triangular matrix and B(k ) is B modified k times by the procedure. 
Often used in solving linear systems, Gaussian elimination is one of the better known 
triangularization methods available to perform the Faddeev's algorithm. since the usual 
back substitution is not needed here, considerable savings in computation and storage are 
obtained. with Faddeev's algorithm, a variety of matrix operations can be performed by 
selective entries in the four quadrants. For example, when D = 0, C = I where I is the 
identity matrix, and B is a column vector, E becomes X, the solution to the linear system 
AX= B. Some other matrix operations possible with Faddeev's algorithm are shown in 
Figure below. The reader is referred for a detailed treatment of Gaussian elimination and 
the solutions to a sample linear systems using Faddeev's algorithm. 
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Systolic arrays for MATRIX TRIANGULARIZATION: = 

Since the underlying procedure to carry out Faddeev's algorithm is matrix 
triangularization, any systolic implementation of the algorithm should be based on a 
structure which can perform triangularization efficiently. Developed by Gentleman and 
Kung as a common platform for two different triangularization methods, the triangular 
systolic array of Figure 2 can execute both Gaussian elimina t ion with neighbor pivoting or 
orthogonal triangularization.19,20 The array consists of two types of 
cells: the boundary cells (represented by circles) and the 
 
 
 

 
 

 

internal cells (represented by squares). These cells are locally interconnected into a triangular 

mesh. Each cell stores a microprogram, enabling it to interact with its neighbors in such a way 

that a triangularization procedure can be carried out. Changing the microprograms of the cells 

will allow the array to execute different procedures. 

 In the following discussion, the term data row refers to a row of entries of matrix X, whereas 

the term array row means a row of cells of the array. The triangularization of matrix X by the 

array is as follow. Initially, all cells contain only zeroes. As each data row i enters the array via 

the top boundary, its entries are stored in the cells on the it h array row. Before the data row i  
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reaches itsrespective array row however, its entries are modified by cells of previous array rows 

such that the first i-I entries are discarded--i.e. became zeroes. The modification of an incoming 

data row is initiated by a boundary cell. 

This cell generates modification factors, values resulting from computations performed on an 

incoming entry and the cell's own stored value. The modification factors are then sent 

rightward to meet other entries of the same data row in the internal cells. There, they are used 

to modify the entries which are subsequently outputed to the next array row. While cells of any 

given array row are updating a data row, they may also update their own currently stored 

values. 

Note that because of the critical timing required for the rightward data stream to reach internal 

cells at proper moments, the input data flow is fed into the array in a skewed order. After 

completion, modified x values left in cells constitute elements of a triangularized matrix and can 

then be readily read out, one from each cell. 
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Nash implementation: = 

To improve the stability of systolic implementation of Faddeev’s algorithm Nash suggested 

a modification to Faddeev’s algorithm by replacing the Gaussian elimination process used 

to triangularize the coefficient matrix A with orthogonal triangularization. 

For clarity, it is useful to divide their algorithm into a two-phase procedure. In the first 

phase A is triangularized by series of given rotation (simultaneously applied to B ); in the 

second phase, the diagonal elements of the resulting triangular matrix are use as pivoting 

elements in the Gaussian elimination procedure on c and where columns of c will be zeroed 

out and D will become the result. Note that for the Gaussian elimination process the work 

properly, it is necessary that these pivoting elements be non-zero, hence the requirement 

that A be full ranked, i.e. at least one of its square sub matrices of order n has non-zero 

determinant. 

Nash systolic implementation, shon in the figure 1, consists of a triangular array and its 

right extension, a square array. The triangular array based on Kung’s design for orthogonal 

trianguarization, performs given rotations an A (first phase) and ordinary Gaussian 

elimination on C (second phase). For higher efficiency in performing given rotations, cells 

macrocodes of figure are slightly modified in to those are also shown. Furthermore the 

added processing of ordinary Gaussian elimination requires the extra code that also shown. 

The square array simply extends the corresponding processing’s to B and D thus consists 

only of square cells. 
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The input data flow involves feeding A and B through the system from the top with cells 

executing the micro program of figure on each incoming row. This corresponds to the first 

phase of the modified algorithm. Notice that the required skewing of the data flow is 

performed by a triangular array of delay cells (represented by square) above the system. 

The second phase is accomplished by similar flow of C and D, only this time the cell execute 

the micro program of figure on the data elements and the resulting matrix will appear row 

by row coming out from the bottom of the square array. These output rows are 

straightened back to normal by another triangular array of delay cells below the square 

array. With a matching I/O bandwidth, the system will compute C   B + D in 5n-1 stapes 

and solved a linear system of n equation in 4n steps. 

The input data flow can be contiguous i.e. matrices A and B and then C and D can enter the 

array without any interruption in between. Data flows of separate problems to be solved by 

the array can also be fed continuously into the array. For this to be possible, additional 

control capabilities are necessary to switch the cells from one set of codes to another at the 

proper time. Slight modification of the micro programs will also be required.   

 

 

In first phase circular cell micro code shown above. 
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Following diagram shown it working in second phase. 

 

 

IN following diagram it shows internal implementation: =
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Square cell: = 

In first phase it can be given as: 

 

 

 

In Second phase: 

 

 

 

 

 

Its internal architecture shown below: 
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Advantages and disadvantage of Nash systolic implementation: = 

Although Nash’s modified Faddeev algorithm is mathematically sound, its systolic 

implementation unfortunately contain some serious deficiencies. 

Implementation errors aside, a drawback of given transforms ids the square root needed to 

compute the vales of sine and cosine for each rotation. Execution time of this operation can 

easily be ten times that of a multiplication or division. Since timing is critical for proper 

synchronization of data flow in a systolic array, it is necessary to slow down the entire 

array correspondingly. Thus the circular cells represent a bottleneck in the system. Of 

course a hardware implementation of the square root id possible, however, we have to 

bear in mind the cost of added cell’s complexity. 

 Another drawback of this implementation is the large pin counts for individual cells 

because of the need to transit simultaneously the sine and cosine values to neighboring 

PEs. Not counting clock control signals, the boundary cell will require one input and two 

output data buses and the internal cell will required three input and three output data 
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buses, for n-bit operands,  3n and 6n  I/O pins are needed for the boundary cells and the 

internal cell, respectively. This translates to a large chip area for each cell. Bus sharing or 

multiplexing schemes to reduce I/O lines are possible, but they would increase the 

processing time and consequently, reduce the throughput rate. 

 

Chaung and He’s implementation in detail and its VHDL coding: = 

Another systolic implementation of Faddeev's algorithm proposed by Chuang and He, 
significantly improves upon the previous array. As shown in Figure 2, exist many 
similarities between the two arrays' design. To compute from nash implementation , both 
systems use a triangular array for the triangularization of A and the annulment of C, and a 
square array for extending the corresponding processing to B and D. The input data flow 
each system in a similar fashion. For the processing of the lower half of the input data flow 
(i.e. matrices C and D), both employ ordinary Gaussian elimination. 
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However, Chuang and He's system processes the upper half of the input data flow (i.e. 
matrices A and B) using Gaussian elimination with neighbor pivoting instead of the Givens 
transform.1 9 Hence, while numerical accuracy is somewhat inferior, this implementation 
is less expensive in terms of processing time and hardware complexities. Because the 
square root operation is not used, the array avoids the bottleneck problem created by the 
boundary cells of the Nash's array. And since the rightward data flow essentially consists of 
only one operand, Mout the pin counts of boundary cell and internal cell are 
correspondingly reduced to 3n and 4n, respectively. 
 
Since it is obvious that different phases processing are required for the upper half and the 
lower half of the data flow, two separate sets of micro programs for boundary cells and 
internal cells are needed, as shown in Figure 9 and 10. The first set, the pivoting functions, 
Performs Gaussian elimination with neighbor pivoting on A and B, while the second set, the 
non-pivoting functions, performs regular Gaussian elimination on C and D and is essentially 
the same as the functions of Nash cells in Figure 7. 
 
As the data flow is pipelined through the array, each boundary cell stores an input data 
element and sends a multiplier Mou t rightwards to modify the input data that o u enter the 
internal cells of the same row.  
 

 
Here in figure shown first phase working. 
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Along with each Mout it generates a one-bit boolean value Vout to signal whether pivoting 
is needed. Each internal cell stores a data value arriving from the top and passes downward 
all the following data after modification. Mout and Vout remain unchanged as they travel 
rightwards through the array. For an input column of length and width 2n data elements, 
the output will be a matrix of order n emerging from the bottom of square array. It can be 
seen that when the system matches the I/O bandwidth, 5n -1 steps are required to obtain 
C   B + D and 4n steps are needed to solve a linear system of n equations. 
 

 

Here it shown in second phase working. 

 
Like in the Nash's implementation, the input data flow of this array can be continuous if 
additional control capabilities are used to individually switch each cell from pivoting to 
non-pivoting mode as required. As published, no technique was mentioned by the authors 
of both implementations to perform this switching; however, we can think of at least two 
different techniques to do this. One is to have the host or a dedicated controller generate 
the controls necessary for each individual cell, thus requiring a complex cell addressing 
scheme. Another is to tag control bits to input data elements which will then carry the 
control information with them throughout the array. This method assumes that the host, 
while generating the input data, will add the necessary control information to it. Its  
Down side is that it will force an enlargement of the I/O bandwidth between the host and 
the array. In the next chapter, it will be shown that a combination of the above mentioned 
technique will be used in our design. Thus, while having the advantages of both, it will 
avoid some of their inefficiencies.  
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Difficulties chased in this project: = 

In this project first we understand Faddeev’s algorithm and real difficulties I faced in Nash 

implementation first it is really hard to implement square root operation and compile it 

after that It take more cycle period than regular one. It gives simulation error when there is 

square root operation with negative values. It is really hard to implement this architecture 

in VHDL. 

Chuang and He’s implementation is quite simple as comparied to Nash implementation it 

has less pins and it does not involve any hard mathematical stuff. But still It has some 

timing problems with it that I have faced with it. 

 

Conclusion: = 

 

In this home works and project I have good experience to implementing Nash and Chuang 

algorithm. There is lot of difficulties with Nash algorithm and it gives simulation errors. 

Chuang and He’s algorithm are simple and can be simulate. But still in this also there is 

some timing issue.  Although these algorithms are good and working fine this are not 

practical means they are not synthesizable.  
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VHDL code for Nash Implementation: = 

Here we have given code for packet we have build for 2*2 matrix. 

 

-- In this program Packet for NASH's Implimentation has given.   

 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

USE ieee.math_real.ALL; 

 

PACKAGE cell IS 

  

COMPONENT delay 

    PORT(CLK : in std_logic; 

           D:in real; 

          Q:out real); 

end COMPONENT; 

  

COMPONENT cell_circular 

    PORT(Xin:in real; --CLK : in std_logic; 

          Cout,Sout:out real); 

end COMPONENT; 

  

COMPONENT cell_square  

      PORT(Xin,Cin,Sin: real; --CLK : in std_logic; 

            Xout,Cout,Sout:out real); 

end COMPONENT; 

 

end cell; 

 

--frist we define here delay cell  

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

Entity delay is 

  PORT(CLK : in std_logic;  

          D:in real; 

          Q:out real); 

end delay; 

 

architecture delay_arch of delay is  

  begin 

    process(D) 

      begin  

        if (clk'event) and (clk = '1') then 

            Q <= D; 

        end if; 



Project Report  
    end process; 

end delay_arch; 

 

-- This procedure represents the execution code of NASH's Systolic Array 

for Boundry cell. 

-- for our simliicity we name it as cell_circular. 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

USE ieee.math_real.ALL; 

 

entity cell_circular is 

  PORT(Xin:in real ; --clk : in std_logic; 

          Cout,Sout:out real); 

end cell_circular; 

 

architecture cell_circular_arch of cell_circular is 

  signal T,S1,S2,S3: real:=0.0;  

  begin 

    process (Xin) 

      variable rl: real:= 0.0; 

      variable Nl: integer := 0; 

      constant g: integer := 2; 

      constant h: real := 0.0; 

      begin 

         if (clk'event) and (clk = '1') then 

            if (Nl < g) then 

              if Xin = h  then 

                Cout <= 1.0; 

                Sout <= 0.0; 

                rl := 0.0; 

              else  

                S1 <= rl*rl; 

                S2 <= Xin*Xin; 

                S3 <= S1+S2; 

                T <= SQRT(S3); 

                Cout <= rl/T;        

                Sout <= Xin/T; 

                rl := T; 

              end if; 

              Nl := Nl+1; 

            else 

          Cout <= Xin/rl; 

          Sout <= 0.0; 

          end if; 

      end if; 

    end process; 

end cell_circular_arch; 

 

-- This procedure represents the execution code of NASH's Systolic Array 

for Internal cell. 
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-- For our simplicity we name it as CELL_square. 

 

Library ieee;     

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

USE ieee.math_real.ALL; 

 

entity cell_square is 

   PORT(Xin,Cin,Sin: real; --CLK : in std_logic;  

            Xout,Cout,Sout:out real); 

end cell_square; 

 

architecture cell_square_arch of cell_square is 

   signal S5,S7,S8: real; 

   begin 

      process (Xin,Cin,Sin) 

        variable rl: real:= 0.0; 

        variable N: integer := 0; 

        constant g: integer := 2; 

        begin 

          if (clk'event) and (clk = '1') then 

            if N < g then 

              Cout <= Cin; 

              Sout <= Sin; 

              S5 <= (-Sin*rl); 

              --S6 <= (Cin*Xin); 

              Xout <= S5 ; 

              S7 <= (Cin*rl); 

              S8 <= (Sin *Xin); 

              rl := S7 + S8; 

              N := N+1; 

            else 

              Xout <= Xin-(Cin*rl); 

              Sout <= 0.0; 

            end if;  

        end if; 

      end process; 

end cell_square_arch; 

     

 

Here we are now defining systolic array for Nash Implementation. 
 
 

-- First we are define cells we gonna to use and we map them according to 

our requirment 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

USE ieee.math_real.ALL; 
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LIBRARY WORK; 

USE WORK.CELL.ALL; 

 

ENTITY SYS2is2 IS  

    PORT(clk: std_logic; 

              A : in real; 

              B : in real; 

              C : in real; 

              E : in real; 

              X,Y : out real); 

end sys2is2; 

 

Architecture A of sys2is2 is 

   

  signal T,S1,S2,S3,S4,S5,S7,S8: real:=0.0; 

  signal Sout1,Cout1,Sout2,Cout2,Sout3,Cout3,Sout4,Cout4: real:=0.0; 

  SIGNAL Sout5,Cout5,Sout6,Cout6,Sout7,Cout7: real:=0.0; 

  SIGNAL Xout2,Xout3,Xout4,Xout5,Xout6,Xout7: real:=0.0; 

  signal Q1,Q2,Q3,Q4,Q5,Q6,Q7: real:=0.0;        

  begin  

        process (A,B,C,E,CLK) 

        BEGIN 

       if (clk'event) and (clk = '1') then 

        delay1 : delay port map (B,Q1); 

        delay2 : delay port map (C,Q2); 

        delay3 : delay port map (E,Q3); 

        delay4 : delay port map (Q2,Q4); 

        delay5 : delay port map (Q3,Q5); 

        delay6 : delay port map (Q5,Q6); 

        cell1 : cell_circular port map( A,Sout1,Cout1); 

        cell2 : cell_square port map (Q1,Sout1,Cout1,Xout2,Sout2,Cout2);  

        cell3 : cell_square port map (Q4,Sout2,Cout2,Xout3,Sout3,Cout3);   

        cell4 : cell_square port map (Q6,Sout3,Cout3,Xout4,Sout4,Cout4); 

        cell5 : cell_circular port map(Xout2,Sout5,Cout5); 

        cell6 : cell_square port map(Xout3,Sout5,Cout5,Xout6,Sout6,Cout6);  

        cell7 : cell_square port map(Xout4,Sout6,Cout6,Xout7,Sout7,Cout7); 

        delay7 : delay port map (Xout6,Q7); 

           

        X <= Q7; 

        y <= Xout7; 

      END IF; 

      end process; 

end A; 

     

 

 

Here we define test bench for Nash implementation. 
 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 
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USE ieee.math_real.ALL; 

 

entity testsys is 

end testsys; 

 

use work.all; 

 

architecture test of testsys is 

  component SYS2is2  

    PORT(CLK: IN std_logic; 

              A : in real; 

              B : in real; 

              C : in real; 

              E : in real; 

              X,Y : out real); 

   

  end component; 

  SIGNAL CLOCKCYCLE:NATURAL:=0; 

  SIGNAL CLK : STD_LOGIC;                                                                                                                                                                   

  signal A,B,C,E,Y,X: real; 

  signal Sout1,Cout1,Sout2,Cout2,Sout3,Cout3,Sout4,Cout4: real:=0.0; 

  SIGNAL Sout5,Cout5,Sout6,Cout6,Sout7,Cout7: real:=0.0; 

  SIGNAL Xout2,Xout3,Xout4,Xout5,Xout6,Xout7: real:=0.0; 

  signal Q1,Q2,Q3,Q4,Q5,Q6,Q7: real:=0.0;    

  signal T,S1,S2,S3,S4,S5,S6,S7,S8: real:=0.0; 

  constant clockperiod: time := 100ns; 

begin  

    uut: SYS2is2 port map (CLK,A,B,C,E,X,Y); 

      clock: process  

          BEGIN 

            CLOCKCYCLE<=CLOCKCYCLE + 1; 

              CLK <= '1'; 

          wait for 50ns; 

                CLK <= '0'; 

          wait for 50ns; 

      end process clock; 

   

  simulus: process 

    begin  

      --WAIT FOR clockperiod; 

      A<=2.0;B<=-1.0;C<=1.0;E<=2.0; 

      WAIT FOR clockperiod; 

       A<=-1.0;B<=0.0;C<=3.0;E<=1.0; 

      WAIT FOR clockperiod; 

       A<=1.0;B<=-2.0;C<=0.0;E<=4.0; 

      WAIT FOR clockperiod; 

      A<=0.0;B<=-7.0;C<=-2.0;E<=1.0; 

       WAIT FOR clockperiod; 

        --A<=0.0;B<=0.0;C<=0.0;E<=0.0; 

       WAIT FOR clockperiod; 

         --A<=0.0;B<=0.0;C<=0.0;E<=0.0; 

       WAIT FOR clockperiod; 

        --A<=0.0;B<=0.0;C<=0.0;E<=0.0; 

       WAIT FOR clockperiod; 
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       --A<=0.0;B<=0.0;C<=0.0;E<=0.0; 

       WAIT FOR clockperiod; 

      --A<=0.0;B<=0.0;C<=0.0;E<=0.0; 

      WAIT FOR clockperiod; 

      WAIT;  

    end process simulus; 

end test; 

    

 

 

 

 

  
  
 

 

 

 

VHDL code for Chaung and He’s Implementation: = 

Here we define packet for chuang and He’s implementation  

 

-- In this program Packet for NASH's Implimentation has given.   

 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

USE ieee.math_real.ALL; 

 

PACKAGE cell_chang IS 

  

COMPONENT delay_chang 

    PORT(--CLK : in std_logic; 

           D:in integer; 

          Q:out integer); 

end COMPONENT; 

  

COMPONENT cell_circular_chang 

    PORT(Xin:in integer; 

          Mout: out integer; Vout:in integer ); 

end COMPONENT; 

  

COMPONENT cell_square_chang  

      PORT(Xin,Min: integer; Vin : in integer; 

            Xout,Sout:out integer;Vout: out integer); 
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end COMPONENT; 

 

end cell_chang; 

 

--frist we define here delay cell  

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

Entity delay_chang is 

  PORT(--CLK : in std_logic;  

          D:in integer; 

          Q:out integer); 

end delay_chang; 

 

architecture delay_arch of delay_chang is  

  begin 

    --process(D) 

      --begin  

        --if (clk'event) and (clk = '1') then 

            Q <= D; 

        --end if; 

    --end process; 

end delay_arch; 

 

-- This procedure represents the execution code of NASH's Systolic Array 

for Boundry cell. 

-- for our simliicity we name it as cell_circular. 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

USE ieee.math_real.ALL; 

 

entity cell_circular_chang is 

  PORT(Xin:in integer ;  

        Mout:out integer; Vout: out integer); 

end cell_circular_chang; 

 

architecture cell_circular_arch of cell_circular_chang is 

  

  begin 

    process (Xin) 

      variable Xc: integer:= 0; 

      variable Nl: integer := 0; 

      constant g: integer := 2; 

      constant h: integer := 0; 

      begin 

         --if (clk'event) and (clk = '1') then 

            if (Nl < g) then 

              if Xin >= Xc  then 

                Vout <= 1; 
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                if Xin/=h then 

                Mout <= (-Xc/Xin); 

              else 

                Mout<=0; 

                Xc := Xin; 

              end if; 

              else  

                Vout<=0; 

              Mout<=(-Xin/Xc); 

            end if;  

          else 

           Mout<=(-Xin/Xc); 

         end if; 

                 

    end process; 

end cell_circular_arch; 

 

-- This procedure represents the execution code of NASH's Systolic Array 

for Internal cell. 

-- For our simplicity we name it as CELL_square. 

 

Library ieee;     

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

USE ieee.math_real.ALL; 

 

entity cell_square_chang is 

     PORT(Xin,Min: integer; Vin : in integer; 

            Xout,Sout:out integer; Vout: out integer); 

end cell_square_chang; 

 

architecture cell_square_arch of cell_square_chang is 

   

   begin 

      process (Xin,Min,Vin) 

        variable Xs: integer:= 0; 

        variable N: integer := 0; 

        constant g: integer := 2; 

        begin 

          --if (clk'event) and (clk = '1') then 

            if N < g then 

            if Vin = 1 then 

            Xout<= Xs + (Min*Xin); 

            Xs:=Xin; 

          else 

            Xout<=Xin+(Min*Xs); 

          end if ; 

        else  

            Xout<=Xin+(Min*Xs);   

          end if; 

      end process; 

end cell_square_arch; 
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Here we define systolic architecture for Chuang and He’s implementation.  

-- First we are define cells we gonna to use and we map them according to 

our requirment 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

--USE ieee.math_real.ALL; 

 

LIBRARY WORK; 

USE WORK.CELL_chang.ALL; 

 

ENTITY SYS_chang IS  

    PORT(clk: std_logic; 

              A : in integer; 

              B : in integer; 

              C : in integer; 

              E : in integer; 

              X,Y : out integer); 

end sys_chang; 

 

Architecture A of sys_chang is 

 

  signal Mout1,Mout2,Mout3,Mout4,Mout5,Mout6,Mout7: integer:=0; 

  SIGNAL Vout1,Vout2,Vout3,Vout4,Vout5,Vout6,Vout7: integer:=0; 

  SIGNAL Xout2,Xout3,Xout4,Xout5,Xout6,Xout7: integer:=0; 

  signal Q1,Q2,Q3,Q4,Q5,Q6,Q7: integer:=0;        

  begin  

        --process (A,B,C,E,CLK) 

        --BEGIN 

        --if (clk'event) and (clk = '1') then 

        delay1 : delay_chang port map (B,Q1); 

        delay2 : delay_chang port map (C,Q2); 

        delay3 : delay_chang port map (E,Q3); 

        delay4 : delay_chang port map (Q2,Q4); 

        delay5 : delay_chang port map (Q3,Q5); 

        delay6 : delay_chang port map (Q5,Q6); 

        cell1 : cell_circular_chang port map( A,Mout1,Vout1); 

        cell2 : cell_square_chang port map 

(Q1,Mout1,Vout1,Xout2,Mout2,Vout2);  

        cell3 : cell_square_chang port map 

(Q4,Mout2,Vout2,Xout3,Mout3,Vout3);   

        cell4 : cell_square_chang port map 

(Q6,Mout3,Vout3,Xout4,Mout4,Vout4); 

        cell5 : cell_circular_chang port map(Xout2,Mout5,Vout5); 

        cell6 : cell_square_chang port map 

(Xout3,Mout5,Vout5,Xout6,Mout6,Vout6);  

        cell7 : cell_square_chang port map 

(Xout4,Mout6,Vout6,Xout7,Mout7,Vout7); 
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        delay7 : delay_chang port map (Xout6,Q7); 

           

        X <= Q7; 

        y <= Xout7; 

      --END IF; 

      --end process; 

end A; 

     

 

 

Test bench for Chuang and He’s Implementation. 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_arith.ALL; 

USE ieee.std_logic_unsigned.ALL; 

USE ieee.numeric_std.ALL; 

USE ieee.math_real.ALL; 

 

entity testsys_chang is 

end testsys_chang; 

 

LIBRARY WORK; 

USE WORK.CELL_chang.ALL; 

 

architecture test of testsys_chang is 

  component SYS_chang  

    PORT(CLK: IN std_logic; 

              A : in integer; 

              B : in integer; 

              C : in integer; 

              E : in integer; 

              X,Y : out integer); 

   

  end component; 

  SIGNAL CLOCKCYCLE:NATURAL:=0; 

  SIGNAL CLK : STD_LOGIC;                                                                                                                                                                   

  signal A,B,C,E,Y,X: integer; 

  signal Mout1,Mout2,Mout3,Mout4,Mout5,Mout6,Mout7: integer:=0; 

  SIGNAL Vout1,Vout2,Vout3,Vout4,Vout5,Vout6,Vout7: integer:=0; 

  SIGNAL Xout2,Xout3,Xout4,Xout5,Xout6,Xout7: integer:=0; 

  signal Q1,Q2,Q3,Q4,Q5,Q6,Q7: integer:=0;  

  constant clockperiod: time := 100ns; 

begin  

    uut: SYS_chang port map (CLK,A,B,C,E,X,Y); 

      clock: process  

          BEGIN 

            CLOCKCYCLE<=CLOCKCYCLE + 1; 

              CLK <= '1'; 

          wait for 50ns; 

                CLK <= '0'; 

          wait for 50ns; 

      end process clock; 
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  simulus: process 

    begin  

      WAIT FOR clockperiod; 

      if (clk'event) and (clk = '1') then 

      A<=2;B<=1;C<=1;E<=2; 

      END IF; 

      WAIT FOR clockperiod; 

      if (clk'event) and (clk = '1') then 

       A<=1;B<=0;C<=3;E<=1; 

       END IF; 

      WAIT FOR clockperiod; 

      if (clk'event) and (clk = '1') then 

       A<=1;B<=2;C<=0;E<=4; 

       END IF; 

      WAIT FOR clockperiod; 

      if (clk'event) and (clk = '1') then 

      A<=0;B<=7;C<=2;E<=1; 

      END IF; 

       WAIT FOR clockperiod; 

       if (clk'event) and (clk = '1') then 

        A<=0;B<=0;C<=0;E<=0; 

        END IF; 

       WAIT FOR clockperiod; 

       if (clk'event) and (clk = '1') then 

         A<=0;B<=0;C<=0;E<=0; 

         END IF; 

       WAIT FOR clockperiod; 

       if (clk'event) and (clk = '1') then 

        A<=0;B<=0;C<=0;E<=0; 

        END IF; 

       WAIT FOR clockperiod; 

       if (clk'event) and (clk = '1') then 

       A<=0;B<=0;C<=0;E<=0; 

       END IF; 

       WAIT FOR clockperiod; 

       if (clk'event) and (clk = '1') then 

      A<=0;B<=0;C<=0;E<=0; 

      END IF; 

      WAIT FOR clockperiod; 

      WAIT;  

    end process simulus; 

end test; 
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